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On (n,m)—groups for n > 3m

JANEZ USAN AND MALISA ZIZOVIC

ABSTRACT. In this article two characterization of (n,m)—groups for n > 3m
are proved (The case m = 1 is proved in [4]).

1. PRELIMINARIES

Definition 1.1 ([1]). Let n > 2 and let (Q; A) be an n—groupoid. We say
that (Q;A) is a Dornte n—group [briefly: n—group] iff is an n-semigroup and
n—quasigroup as well (See also [9]).

Definition 1.2 ([2]). Let n > m+1 and (Q; A) be an (n, m)—groupoid (A : Q" —
Q™). We say that (Q; A) is an (n, m)—group iff the following statements hold:
(i) For every i,j € {1,...,n—m + 1},7 < j, the following law holds

o . B 1 N 7
A(le I,A(f’fim 1)’x121nm) = A( { vA(x;+n )7$32nm)

[:< i,j >—associative law]/,
(13) For every i € {1,...,n—m+ 1} and for every af € @ there is exactly one
z" € Q™ such that the following equality holds

i—1 _m _n—m\ __ n
A(al y L1 5y )_anfm+1‘

For m =1 (Q; A) is an n—group. Cf. [9].

Proposition 1.1 ([3]). Let (Q; A) be an (n, m)-groupoid and let n > m+2. Also
let the following statements hold
(1) (Q; A) is a (n,m)-semigroup (cf. (i) in definition 1.2);
(2) For every ab € Q there is exactly one z{* € Q™ such that the following
equality holds
A(a?_mv m7ln) = ag—m-ﬁ-l;
(3) For every a} € Q there is exactly one yi* € Q™ such that the following
equality holds
Al a1™") = ap -
Then (Q; A) is an (n,m)—group. See, also [10].

2000 Mathematics Subject Classification. Primary: 20N15.
Key words and phrases. n—group, (n,m)-groupoid, (n,m)-group, {1,n — m + 1}-neutral
operation of the (n, m)-groupoid.

(©2005 Mathematica Moravica

87



88 ON (n,m)-GROUPS FOR n > 3m

Definition 1.3 ([6]). Let n > 2m and let (Q; A) be an (n, m)—groupoid. Let also
e be a mapping of the set Q" 2™ into the set Q™. Then, we say that e is an
{1,n — m 4 1}—neutral operation of the (n,m)-groupoid (Q; A) iff for every
sequence a}~*™ over () and for every 2 € Q™ the following equalities hold:

Az, af ™" e(a)T2™)) = af!
and
Afe(al "), a2 o) = o

For m =1 e is an {1, n}-neutral operation of the n—groupoid (@Q; A). Cf. Chapter
IT in [9].

2. AUXILIARY PROPOSITIONS

Proposition 2.1 ([7]). Letn > 2m and let (Q, A) be an (n, m)—groupoid. Further
on, let the following statements hold:
(a) The < 1,m —m+ 1> —associative law holds in (Q; A);
(b) For every a} € @, there is at least one x" € Q™ such that the equality
A(ay™™ x{”) =ap_,, 1 holds;
(¢c) For every af € Q, there is at least one y" € Q™ such that the equality
Ay a1™™) = ap_ynqq holds.

Then (Q; A) has a {1,n — m + 1}-neutral operation.
For m = 1: Prop.2.5-II in [9].

In this paper, among others, the following < 4, j >—associative laws have the
prominence:

(1L) A(A(), 22 ™) = Az, Az ), 27 5™)
and
(1R) A Ay ), wan—m) = AT A2 T)).

Proposition 2.2 ([5]). Let (Q A) be an (n,m)-group, e its {1,n—m+1}-neutral
operation (cf. 1. 4) and let n > 2m. Then, for every al *™ b7™*™ o € Q and
foralli e {1,...,n —2m + 1} the following equalities hold

(1) A, 02, e(af ™), b71) = A(e(af ™), a2, 2
and
@) A2, e(b] ), by ) = Al a7 e(a) ™).

Cf. Prop. 1.1-IV in [9].

Proposition 2.3 ([7]). Let n > m+1 and let (Q; A) be an (n, m)-groupoid. Also
let

() The (1L) [(1R)] law holds in (Q; A);
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(B) For every x1*,y1",a7™™ € Q the following implication holds
Al af™™) = A(y1", ay™™) = af" = o1
[Alay™™, 21") = Alay™™, 41") = 21" = yI"].
Then, (Q; A) is an (n, m)-semigroup.

Proposition 2.4 ([8]). Let n > 3m and let (Q; A) be an (n, m)-groupoid. Then
the following statements are equivalent
(1) (Q;A) is an (n,m)-group;
(13) There is at least one i € {m + 1,...,n —2m + 1} such that the following
conditions hold:
(a) the < i—1,i > —associative law holds in (Q; A);
(b) the <i,i+ 1> —associative law holds in (Q; A);
(c) for everyal € Q there is exactly one x* € Q™ such that the following
equality holds

Form =1: Th. 3.4-IX in [9].

3. RESULTS

Theorem 3.1. Let n > 3m and let (Q; A) be an (n, m)-groupoid. Then, (Q;A)
is an (n, m)-group iff there is a mapping E of the set Q"~>™ into the set Q™ such
that the laws

(1L) A(A(a), z20™) = Az, Ay, 225™)

(1Lm) A(A(al, By™), e, di=2m) = A(afr, ABY™, &), dp 2,
(2L) A(ay™2m E(ay ™), ) = !

and

(2R) A a2 E(ah™2m)) = 2

hold in the algebra (Q; A,E).
Remark 3.1. For m = 1: (1L)=(1Lm).

Proof.

a) = Let (Q;A) be an (n,m)—group. Then, by Prop. 2.1, by Def. 1.2 and by
Prop. 2.2, there is an algebra (Q; A, e) of the type < (n,m), (n—2m,m) >
in which the laws (1L),(1Lm),(2L) and (2R) hold.

b) < Let (Q; A, e) be an algebra of the type < (n,m), (n — 2m,m) > in which
the laws (1L),(1Lm), (ﬁ) and (2R) are satisfied. Firstly, we prove that
under the assumptions the following statements hold:
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1° For every z7", y7"*, b" € Q™ and for every sequence a?ﬂm over ()
following implication holds
A(lnlna 1 aa711 Qm) = A(yinﬁ 1 7a? 2m) = $71n = y71n;
2° (@; A) is an (n, m)-semigroup;
3° (me c Qm)(vcz c Q)n 3m bm — E( —3m E(bgn, n— Sm))’
4° For every 7", yi",b" € Q@™ and for every sequence aqf_zm over )
implication
A( 15771 ,CL? Qm) _A(bm7y1 )y @ n Qm) :>x71n :yin
holds;
5° For every 7", y7", b1* € Q™ and for every sequence a’f‘Qm over ()
implication
A2 B = A g ) = 2 = g
holds;
6° For every x7*, b7, c]* € Q™ and for every sequence a’f‘Qm over ()
equivalence
A( 1 7‘7:17 ;l QW)_C’T@
o = Ay E df ), o E(af ).
Sketch of the proof of 1°:
A B a7 ") = A B al ) =
A(A(], b, af™2™), (a7 ™2™), ¢ B, 67 70M) =
ACAG, b7, a7 =2m), E(ay2m), e, BBy, ¢ —om))
A, AT ay ™™, E(a}™ 2m))70?_3m E(", ¢ 7™)) =
(2R)
Ay, AT, ay ™2™, E(a772M)), G0 BT, 4 70M))
A, b1, ™ o CE(O, 3m)) =
2R)
AP, b, e BT, M) = et = g
The proof of the statement 2°: By 1°, (1L) and by Prop. 2.3.
Sketch of the proof of 3°:
(21)
A 3 B ), B B, ¢ ) B B B

(2R)

A, e (O], ), B> T B, 67 0M))) =0T

the

the

the

the

))7
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Sketch of the proof of 4°:

AT, 2, a7 THM) = AT, it a7 =

A(Sm BB, ), ABP, o, a2, E(al2m) =
n—oaom m n m n m m 20
A(Pm E(B], 7™, A(b] 7y1712)’( ) =
A5 (B, ™), b, A, a2, E(al2m))) =
AR5 B ), b, A a2 By 2m)) 2
A B, ), b ) =
n—om m n—om m m 30
A(cy 3 E(b] o} K ), 01", y1") =
A(C?_3maE( 7171701 3m)7E(c71L_3m E( 1 761 3m)) xl)
A —3m E —3m E —3m E m (/2—5)
(c™ (b7, ™), E(ey™ (b7, ™ ))73/1 ) =
zy" = yi".

Sketch of the proof of 5°:
A(a? 2m’ T,bm)—A( n— Zm,y{njbm) =

A(E™, Aa ™2™, 2, BT, ) =
A(SE™, A(ay2m g o), =) 2
ACAE™, a2, ' b, =3 =
ACASE™, @l 2m) i b, d—3m) == 2 = g,

Sketch of the proof of 6°:

AT 2 av ) = dn PN

Al G M), AR o, af "), E(a] M) =
A7, EOT "), E(af ") &
Al G, M), b, A, a7, E(a] ™)) =
A BB, 15, dp Eap~2m) 2

Al E( m -m), 1,9:1)—

A BT, 67, A BT, ) <
A @ 6 B B ), ) =

A B 15, dp Eap~2m) 22

o' = Aef ™" B, ¢ 7M), i, E(a] T2M)).
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Finally, by 2°, 6° and by Prop. 2.4, we conclude that (Q;A) is an (n,m)—
group. O

Similarly, one could prove also the following proposition:

Theorem 3.2. Let n > 3m and let (Q; A) be an (n,m)—groupoid. Then, (Q;A)
is an (n, m)-group iff there is a mapping E of the set Q"~?™ into the set Q™ such
that the laws

(1R) Ay~ A2 ), won o) = A(EE™ A2 ),
(1Rm) Ala ™™ AT, ™), d) = A(a ™™ b, AT, ),
(2L) A(E(af ™), ap 7™, 27) = 2T

(2R) A2} E(a] ™), af>") = .

Remark 3.2. For m = 1: (1R)=(1Rm).

Remark 3.3. The case m =1 is described in [4]. See, also Chapter XII-1 in [9].
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