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On (n, m)–groups for n ≥ 3m

Janez Ušan and Malǐsa Žižović

Abstract. In this article two characterization of (n, m)−groups for n ≥ 3m

are proved (The case m = 1 is proved in [4]).

1. Preliminaries

Definition 1.1 ([1]). Let n ≥ 2 and let (Q; A) be an n–groupoid. We say
that (Q; A) is a Dörnte n–group [briefly: n–group] iff is an n–semigroup and
n–quasigroup as well (See also [9]).

Definition 1.2 ([2]). Let n ≥ m+1 and (Q; A) be an (n, m)–groupoid (A : Qn →
Qm). We say that (Q; A) is an (n, m)–group iff the following statements hold:

(i) For every i, j ∈ {1, . . . , n − m + 1}, i < j, the following law holds

A(xi−1
1 , A(xi+n−1

i ), x2n−m
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−m

j+n )

[:< i, j >–associative law];
(ii) For every i ∈ {1, . . . , n−m + 1} and for every an

1 ∈ Q there is exactly one
xm

1 ∈ Qm such that the following equality holds

A(ai−1
1 , xm

1 , an−m
i ) = an

n−m+1.

For m = 1 (Q; A) is an n–group. Cf. [9].

Proposition 1.1 ([3]). Let (Q; A) be an (n, m)–groupoid and let n ≥ m+2. Also
let the following statements hold

(1) (Q; A) is a (n, m)–semigroup (cf. (i) in definition 1.2);
(2) For every an

1 ∈ Q there is exactly one xm
1 ∈ Qm such that the following

equality holds
A(an−m

1 , xm
1 ) = an

n−m+1;

(3) For every an
1 ∈ Q there is exactly one ym

1 ∈ Qm such that the following
equality holds

A(ym
1 , an−m

1 ) = an
n−m+1.

Then (Q; A) is an (n, m)–group. See, also [10].
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Definition 1.3 ([6]). Let n ≥ 2m and let (Q; A) be an (n, m)–groupoid. Let also
e be a mapping of the set Qn−2m into the set Qm. Then, we say that e is an
{1, n − m + 1}–neutral operation of the (n, m)–groupoid (Q; A) iff for every
sequence an−2m

1 over Q and for every xm
1 ∈ Qm the following equalities hold:

A(xm
1 , an−2m

1 , e(an−2m
1 )) = xm

1

and

A(e(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1 .

For m = 1 e is an {1, n}–neutral operation of the n–groupoid (Q; A). Cf. Chapter
II in [9].

2. Auxiliary propositions

Proposition 2.1 ([7]). Let n ≥ 2m and let (Q, A) be an (n, m)–groupoid. Further
on, let the following statements hold:

(a) The < 1, n − m + 1 > −associative law holds in (Q; A);
(b) For every an

1 ∈ Q, there is at least one xm
1 ∈ Qm such that the equality

A(an−m
1 , xm

1 ) = an
n−m+1 holds;

(c) For every an
1 ∈ Q, there is at least one ym

1 ∈ Qm such that the equality
A(ym

1 , an−m
1 ) = an

n−m+1 holds.

Then (Q; A) has a {1, n − m + 1}–neutral operation.

For m = 1: Prop.2.5-II in [9].
In this paper, among others, the following < i, j >–associative laws have the

prominence:

(1L) A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 )

and

(1R) A(xn−m−1
1 , A(x2n−m−1

n−m ), x2n−m) = A(xn−m
1 , A(x2n−m

n−m+1)).

Proposition 2.2 ([5]). Let (Q; A) be an (n, m)–group, e its {1, n−m+1}–neutral
operation (cf. 1.4), and let n > 2m. Then, for every an−2m

1 , bn−2m
1 , xm

1 ∈ Q and
for all i ∈ {1, . . . , n − 2m + 1} the following equalities hold:

(1) A(xm
1 , bn−2m

i , e(an−2m
1 ), bi−1

1 ) = A(e(an−2m
1 ), an−2m

1 , xm
1 )

and

(2) A(bn−2m
i , e(bn−2m

1 ), bi−1
1 , xm

1 ) = A(xm
1 , an−2m

1 , e(an−2m
1 )).

Cf. Prop. 1.1-IV in [9].

Proposition 2.3 ([7]). Let n > m+1 and let (Q; A) be an (n, m)–groupoid. Also
let

(α) The (1L) [(1R)] law holds in (Q; A);
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(β) For every xm
1 , ym

1 , an−m
1 ∈ Q the following implication holds

A(xm
1 , an−m

1 ) = A(ym
1 , an−m

1 ) ⇒ xm
1 = ym

1

[A(an−m
1 , xm

1 ) = A(an−m
1 , ym

1 ) ⇒ xm
1 = ym

1 ].

Then, (Q; A) is an (n, m)–semigroup.

Proposition 2.4 ([8]). Let n ≥ 3m and let (Q; A) be an (n, m)–groupoid. Then
the following statements are equivalent

(i) (Q; A) is an (n, m)–group;
(ii) There is at least one i ∈ {m + 1, . . . , n − 2m + 1} such that the following

conditions hold:
(a) the < i − 1, i > −associative law holds in (Q; A);
(b) the < i, i + 1 > −associative law holds in (Q; A);
(c) for every an

1 ∈ Q there is exactly one xm
1 ∈ Qm such that the following

equality holds

A(ai−1
1 , xm

1 , an−m
i ) = an

n−m+1.

For m = 1: Th. 3.4-IX in [9].

3. Results

Theorem 3.1. Let n ≥ 3m and let (Q; A) be an (n, m)–groupoid. Then, (Q; A)
is an (n, m)–group iff there is a mapping E of the set Qn−2m into the set Qm such
that the laws

(1L) A(A(xn
1 ), x2n−m

n+1 ) = A(x1, A(xn+1
2 ), x2n−m

n+2 )

(1Lm) A(A(am
1 , bn−m

1 ), cm
1 , dn−2m

1 ) = A(am
1 , A(bn−m

1 , cm
1 ), dn−2m

1 ),

(2̂L) A(an−2m
1 , E(an−2m

1 ), xm
1 ) = xm

1

and

(2R) A(xm
1 , an−2m

1 , E(an−2m
1 )) = xm

1

hold in the algebra (Q; A, E).

Remark 3.1. For m = 1: (1L)=(1Lm).

Proof.

a) ⇒ Let (Q; A) be an (n, m)–group. Then, by Prop. 2.1, by Def. 1.2 and by
Prop. 2.2, there is an algebra (Q; A, e) of the type < (n, m), (n−2m, m) >

in which the laws (1L),(1Lm),(2̂L) and (2R) hold.
b) ⇐ Let (Q; A, e) be an algebra of the type < (n, m), (n − 2m, m) > in which

the laws (1L),(1Lm), (2̂L) and (2R) are satisfied. Firstly, we prove that
under the assumptions the following statements hold:
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1◦ For every xm
1 , ym

1 , bm
1 ∈ Qm and for every sequence an−2m

1 over Q the
following implication holds

A(xm
1 , bm

1 , an−2m
1 ) = A(ym

1 , bm
1 , an−2m

1 ) ⇒ xm
1 = ym

1 ;

2◦ (Q; A) is an (n, m)–semigroup;
3◦ (∀bm

1 ∈ Qm)(∀ci ∈ Q)n−3m
1 bm

1 = E(cn−3m
1 , E(bm

1 , cn−3m
1 ));

4◦ For every xm
1 , ym

1 , bm
1 ∈ Qm and for every sequence an−2m

1 over Q the
implication

A(bm
1 , xm

1 , an−2m
1 ) = A(bm

1 , ym
1 , an−2m

1 ) ⇒ xm
1 = ym

1

holds;
5◦ For every xm

1 , ym
1 , bm

1 ∈ Qm and for every sequence an−2m
1 over Q the

implication

A(an−2m
1 , xm

1 , bm
1 ) = A(an−2m

1 , ym
1 , bm

1 ) ⇒ xm
1 = ym

1

holds;
6◦ For every xm

1 , bm
1 , cm

1 ∈ Qm and for every sequence an−2m
1 over Q the

equivalence

A(bm
1 , xm

1 , an−2m
1 ) = cm

1 ⇔

xm
1 = A(dn−3m

1 , E(bm
1 , dn−3m

1 ), cm
1 , E(an−2m

1 )).

Sketch of the proof of 1◦:

A(xm
1 , bm

1 , an−2m
1 ) = A(ym

1 , bm
1 , an−2m

1 ) ⇒

A(A(xm
1 , bm

1 , an−2m
1 ), E(an−2m

1 ), cn−3m
1 , E(bm

1 , cn−3m
1 )) =

A(A(ym
1 , bm

1 , an−2m
1 ), E(an−2m

1 ), cn−3m
1 , E(bm

1 , cn−3m
1 ))

(1Lm)
=⇒

A(xm
1 , A(bm

1 , an−2m
1 , E(an−2m

1 )), cn−3m
1 , E(bm

1 , cn−3m
1 )) =

A(ym
1 , A(bm

1 , an−2m
1 , E(an−2m

1 )), cn−3m
1 , E(bm

1 , cn−3m
1 ))

(2R)
=⇒

A(xm
1 , bm

1 , cn−3m
1 , E(bm

1 , cn−3m
1 )) =

A(ym
1 , bm

1 , cn−3m
1 , E(bm

1 , cn−3m
1 ))

(2R)
=⇒ xm

1 = ym
1 .

The proof of the statement 2◦: By 1◦, (1L) and by Prop. 2.3.
Sketch of the proof of 3◦:

A(bm
1 , cn−3m

1 , E(bm
1 , cn−3m

1 ), E(cn−3m
1 , E(bm

1 , cn−3m
1 )))

d(2L)
= E(cn−3m

1 , E(bm
1 , cn−3m

1 )),

A(bm
1 , cn−3m

1 , E(bm
1 , cn−3m

1 ), E(cn−3m
1 , E(bm

1 , cn−3m
1 )))

(2R)
= bm

1 .
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Sketch of the proof of 4◦:

A(bm
1 , xm

1 , an−2m
1 ) = A(bm

1 , ym
1 , an−2m

1 ) ⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), A(bm

1 , xm
1 , an−2m

1 ), E(an−2m
1 )) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), A(bm

1 , ym
1 , an−2m

1 ), E(an−2m
1 ))

2◦
=⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), bm

1 , A(xm
1 , an−2m

1 , E(an−2m
1 ))) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), bm

1 , A(ym
1 , an−2m

1 , E(an−2m
1 )))

(2R)
=⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), bm

1 , xm
1 ) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), bm

1 , ym
1 )

3◦
=⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), E(cn−3m

1 , E(bm
1 , cn−3m

1 )), xm
1 ) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), E(cn−3m

1 , E(bm
1 , cn−3m

1 )), ym
1 )
d(2L)
=⇒

xm
1 = ym

1 .

Sketch of the proof of 5◦:

A(an−2m
1 , xm

1 , bm
1 ) = A(an−2m

1 , ym
1 , bm

1 ) ⇒

A(c2m
1 , A(an−2m

1 , xm
1 , bm

1 ), dn−3m
1 ) =

A(c2m
1 , A(an−2m

1 , ym
1 , bm

1 ), dn−3m
1 )

2◦
=⇒

A(A(c2m
1 , an−2m

1 ), xm
1 , bm

1 , dn−3m
1 ) =

A(A(c2m
1 , an−2m

1 ), ym
1 , bm

1 , dn−3m
1 )

4◦
=⇒ xm

1 = ym
1 .

Sketch of the proof of 6◦:

A(bm
1 , xm

1 , an−2m
1 ) = dm

1
5◦

⇐⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), A(bm

1 , xm
1 , an−2m

1 ), E(an−2m
1 )) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), dm

1 , E(an−2m
1 ))

2◦
⇐⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), bm

1 , A(xm
1 , an−2m

1 , E(an−2m
1 ))) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), dm

1 , E(an−2m
1 ))

(2R)
⇐⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), bm

1 , xm
1 ) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), dm

1 , E(bm
1 , cn−3m

1 ))
3◦

⇐⇒

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), E(cn−3m

1 , E(bm
1 , cn−3m

1 )), xm
1 ) =

A(cn−3m
1 , E(bm

1 , cn−3m
1 ), dm

1 , E(an−2m
1 ))

d(2L)
⇐⇒

xm
1 = A(cn−3m

1 , E(bm
1 , cn−3m

1 ), dm
1 , E(an−2m

1 )).
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Finally, by 2◦, 6◦ and by Prop. 2.4, we conclude that (Q; A) is an (n, m)–
group. �

Similarly, one could prove also the following proposition:

Theorem 3.2. Let n ≥ 3m and let (Q; A) be an (n, m)–groupoid. Then, (Q; A)
is an (n, m)–group iff there is a mapping E of the set Qn−2m into the set Qm such
that the laws

(1R) A(xn−m−1
1 , A(x2n−m−1

n−m ), x2n−m) = A(xn−m
1 , A(x2n−m

n−m+1)),

(1Rm) A(an−2m
1 , A(bm

1 , cn−m
1 ), dm

1 ) = A(an−2m
1 , bm

1 , A(cn−m
1 , dm

1 )),

(2L) A(E(an−2m
1 ), an−2m

1 , xm
1 ) = xm

1

(2̂R) A(xm
1 , E(an−2m

1 ), an−2m
1 ) = xm

1 .

Remark 3.2. For m = 1: (1R)=(1Rm).

Remark 3.3. The case m = 1 is described in [4]. See, also Chapter XII-1 in [9].
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